

Communication

Palladium-Catalyzed Methylation of Aryl C-H Bond by Using Peroxides

Yuhua Zhang, Jianqing Feng, and Chao-Jun Li

J. Am. Chem. Soc., 2008, 130 (10), 2900-2901 • DOI: 10.1021/ja0775063

Downloaded from http://pubs.acs.org on February 8, 2009

$$Ar-H$$
 + R' $O-O-R''$ CH_3 CH_3 CH_3 CH_3 CH_3

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 9 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- · Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 02/13/2008

Palladium-Catalyzed Methylation of Aryl C-H Bond by Using Peroxides

Yuhua Zhang,† Jianqing Feng,‡ and Chao-Jun Li*,†,‡

Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, and Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada

Received October 4, 2007; E-mail: cj.li@McGill.ca

Transition-metal-catalyzed activation of aryl C-H bonds followed by C-C bond formation provides a promising alternative to the standard coupling reactions using preformed organometallic reagents. In this area of research, various functional groups containing heteroatoms such as acetyl, acetoamino, oxazolyl, pyridyl, and imino groups can provide an anchor for either stoichiometric or catalytic *ortho*-metalation of aromatic rings, which leads to subsequent regioselective formation of C-C bonds for synthetic purposes. Ru and Rh complexes are the hors d'oeuvres of effective catalysts which have succeeded in performing carbo-functionalization of aryl C-H bonds by reacting with olefins or aryl organometallic reagents. 1a,2

Recently, Pd-catalyzed direct functionalizations of aryl C-H to form C-C bonds have been investigated intensively (Scheme 1). Among them, alkenylation of aryl C-H bonds via Pd(II)/Pd(0) catalysis generated Heck-type reaction³ products (route a).⁴ For alkylation of aryl C-H bonds, recently Yu and co-workers reported the aryl methylation with methylboronic acids (analogous to the Suzuki-type reaction⁵) and organotin reagents catalyzed by Pd together with an oxidizing reagent (route b).⁶ Alternatively, a Pd-catalyzed aryl-aryl coupling via aryl C-H bond by using arylsilanes has been achieved,⁷ analogous to the Corriu-Kumada-Hiyama coupling.⁸ Herein, we wish to report an unprecedented palladium-catalyzed methylation of arenes by using peroxides, serving as both a novel methylating reagent and the hydrogen acceptor (route c).

To begin our study, we discovered that the reaction of 2-phenylpyridine (1a) with tert-butyl peroxide (2a) catalyzed by Pd-(OAc)₂ at 140 °C under an atmosphere of nitrogen generated 20% of 2-o-tolylpyridine (3a) (Table 1, entry 1) (Caution: heating large amounts of peroxide at high temperature is potentially dangerous). Further optimization showed that 40% of 3a and 5% of 2-(2,6dimethylphenyl)pyridine 4a (a bismethylation product) could be obtained when tert-butylbenzene was used as solvent (Table 1, entry 2). Interestingly, no reaction was observed when tert-butyl hydroperoxide instead of tert-butyl peroxide was used. On the other hand, tert-butyl peroxybenzoate, tert-butyl cumyl peroxide, and di(tertbutyl peroxyisopropyl)benzene were also found to be effective in generating the desired product without any solvent (Table 1, entries 4-6), with dicumyl peroxide providing the best results under the neat conditions (Table 1, entry 7). It should be mentioned that the remaining unreacted phenylpyridine can be recovered nearly quantitatively and no other significant product could be detected in the reaction. Subsequently, various palladium catalysts were examined under these conditions (Table 1, entries 8-13). PdCl₂ and (CH₃CN)₂PdCl₂ also gave good yields of the methylation product (Table 1, entries 8 and 9), whereas Pd(CF₃CO₂)₂, Pd(PPh₃)₄, Pd(C₅H₇O₂)₂, and (PPh₃)₂PdCl₂ were less effective (Table 1, entries 10-13) as catalysts for this transformation. When 1 equiv of the peroxide 2f was used, only a small amount of the double methylation product was observed (Table 1, entry 14). With 4 equiv of the

Scheme 1. Pd-Catalyzed Functionalization of Aryl C-H Bond

Table 1. Optimization of Reaction Conditions^a

entry	catalyst (mol %)	2 (equiv)		T (°C)	yields of 3 + 4 (%) ^[b]
1 ^[c]	Pd(OAc) ₂ (10)	+0-0+ (2a)	(5.0)	140	20 + 0
2 ^[d]	Pd(OAc) ₂ (10)	2a	(5.0)	150	40 + 5
3	Pd(OAc) ₂ (10)	(2b)	(2.0)	130	O[e]
4	Pd(OAc) ₂ (10)	PhC(O)O-O-(2	c)(2.0)	130	5 + 0 ^[f]
5	Pd(OAc) ₂ (10)	Ph+O-O+ (2d) (2.0)	130	50 + 10
6	Pd(OAc) ₂ (10)	p-C ₆ H ₄ +++O-O+	(1.0)	130	50 + 10
		(2e)	•		
7	Pd(OAc) ₂ (10)	Ph+0-0+Ph (2f)	(2.0)	130	50 + 40
8	PdCl ₂ (10)	2f	(2.0)	130	65 + 10
9	(CH ₃ CN) ₂ PdCl ₂ (1	0) 2f	(2.0)	130	55 + 7
10	Pd(CF ₃ COO) ₂ (10		(2.0)	130	30 + 10
11	Pd(PPh ₃) ₄ (10)	2f	(2.0)	130	30 + 0 ^[f]
12	Pd(C ₅ H ₇ O ₂) ₂ (10)	2f	(2.0)	130	20 + 5
13	(PPh ₃) ₂ PdCl ₂ (10) 2f	(2.0)	130	20 + 0 ^[f]
14	Pd(OAc) ₂ (10)	2f	(1.0)	130	50 + 10
15	Pd(OAc) ₂ (10)	2f	(4.0)	130	$0^{[f]} + 70$
16	Pd(OAc) ₂ (10)	2f	(2.0)	150	50 + 45
17	Pd(OAc) ₂ (10)	2f	(2.0)	100	40 + 5
18	Pd(OAc) ₂ (5)	2f	(2.0)	130	60 + 20
19		2f	(2.0)	130	O _[e]

 $[^]a$ Conditions: all reactions were carried out with **1a** (0.2 mmol), 12 h under N₂ in a closed reaction vessel, unless otherwise noted. b ¹H NMR yields determined by using 1,4-dioxane as an internal standard. c Reaction time: 5 h. d *tert*-Butylbenzene (0.1 mL) as solvent. e Not detected by 1 H NMR; 90% of **1a** remained. f Not detected by 1 H NMR.

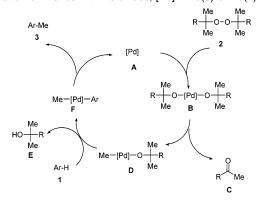
peroxide **2f**, the double methylation product **4a** was the only product, obtained in 70% yield (Table 1, entry 15). Raising the reaction temperature slightly increases the product yield (Table 1, entry 16). Lowering the reaction temperature or reducing the amount of catalyst markedly decreases the product yield (Table 1, entries 17 and 18). No product was detected in the absence of Pd(OAc)₂ (Table 1, entry 19).

Under the optimized reaction conditions, various 2-phenylpyridine derivatives were examined (Table 2, entries 4-10). With benzo[h]quinoline (1d), only one reactive site being available for the reaction, as the substrate, 76% of the monomethylation product 3d was obtained (Table 2, entry 7). The electronic effect does not affect the reaction significantly (compare entries 5, 8, and 9). The

[†] Tulane University.

[‡] McGill University.

Table 2. Methylation of sp² C-H Bonds with 2fa


entry	substrate (1)	product and yields ^[b] overall yield		
	N 1a	N + 1	4a	
1 ^[c]		54% 18%	6 72%	
2 ^[d]		45% 289	% 73%	
3 ^[e]		639		
4	3a	559	% 55%	
5	1b	3b 35% 4b 24	N 59%	
6	1c	~ · ·	%(NMR) 68%	
7 ^[f]	N 1d	3d	76%	
8	MeO 1e	MeO 3e 32% 4e 2	60% 88%	
9 N	NeO ₂ C	MeO ₂ C 3f 55% 4f 8'	63% %	
10	1g	3g	63%	
11	The state of the s	The same of the sa	42%	
12	THO 1i	→ H → 3i	33%	
13	H N (H NN + N + N + Total yield of 3a and 3j = 42% 1H NMR ratio of 3a:3j = 1:1	72% 4a 30%	

^a Conditions: all reactions were carried out with 1 (0.5 mmol), dicumyl peroxide **2f** (1.0 mmol), 12 h under N₂, unless otherwise noted. ^b Isolated yields. ^c 1a (0.5 mmol), dicumyl peroxide (0.75 mmol). ^d 1a (0.5 mmol), dicumyl peroxide (1.0 mmol). e 1a (0.5 mmol), dicumyl peroxide (2.0 mmol). f 1d (0.5 mmol), dicumyl peroxide (0.75 mmol).

reaction of 2-(3-methylphenyl)pyridine (1g) gave 3g exclusively (Table 2, entry 10). It is interesting to note that acetanilides are also effective in this transformation, generating the methylation product in moderate yields under these conditions (Table 2, entries 11 and 12).

A tentative mechanism to rationalize this novel palladium catalyzed methylation of aryl C-H bond is illustrated in Scheme 2. Palladium species A, at a lower oxidation state, inserts into the weak O-O bond of peroxide 2 to generate a higher oxidation state intermediate **B**. Heterolytic β -methyl elimination⁹ of **B** leads to ketone C and the methylpalladium intermediate D. Reaction of D with arenes generates alcohol E and intermediate F, which leads to methylation product 3 via reductive elimination, and regenerates the active palladium species A.10 In support of this proposed mechanism, nearly stoichiometric amounts of both ketone C and alcohol E were detected in the crude reaction mixture by ¹H NMR and could be isolated nearly quantitatively by column chromatography. On the other hand, no significant isotope effect was observed in an intramolecular competition experiment using 2-(2-deuterophe-

Scheme 2. Tentative Mechanism for the Palladium-Catalyzed Methylation of Arenes with Peroxides, [Pd] = Pd(0) or Pd(II)

nyl)pyridine as a substrate (Table 2, entry 13), which suggests a possible alternative (e.g., radical) mechanism.

In summary, we have developed a novel method for the direct methylation of aryl C-H bonds by using peroxide compounds as both methylating reagents and hydrogen acceptor. The study provides a new avenue for the direct alkylation of aryl C-H bonds by using alkyl radicals rather than organometallic reagents. Further investigations including the scope, mechanism, and synthetic application of this reaction are in progress.

Acknowledgment. We are grateful to the Canada Research Chair (Tier I) Foundation (to C.J.L.), the NSF-EPA Joint Program for a Sustainable Environment, and NSERC for support.

Supporting Information Available: Representative experimental procedure and characterization of all new compounds (PDF). This material is available free of charge via the Internet at http:/pubs.acs.org.

References

- (1) (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529. (b) Lazareva, A.; Daugulis, O. Org. Lett. 2006, 8, 5211. (c) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586. (d) Tremont, S. J.; ur Rahman, N. M. J. Am. Chem. Soc. **2002**, 124, 1250. (u) TICHIOHI, S. J., uI KAIIIIAH, H. J. Am. Chem. Soc. **1984**, 106, 5759. (e) Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. **2005**, 127, 4156. (f) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. **2005**, 127, 7330. (g) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. **2004**, 126, 2300. (h) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. **2005**, 44, 2112. (i) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2006,
- (2) (a) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. (b) Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1999, 121, 6616. (c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698. (d) Lim, Y.-G.; Ahn, J.-A.; Jun, C.-H. Org. Lett. 2004, 6, 4687. (e) Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2004, 126, 7192. (f) Oi, S.; Fukita, S.; Inoue, Y. Chem. Commum. 1998, 2439.
- (3) Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320.
 (4) (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (b) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi. Z. J. Am. Chem. Soc. 2007, 129, 7666. (c) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (d) Dwight, T. Chem. Co. 7. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. *Org. Lett.* **2007**, *9*, 3137. (e) Hull, K. L.; Sanford, M. S. *J. Am. Chem. Soc.* **2007**, *129*, 11904. (f) Stuart D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. **2007**, 129, 12072.
- (5) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.
 (6) (a) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 78. (b) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634. (c) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
- (7) Yang, S.; Li. B.; Wan, X.; Shi. Z. J. Am. Chem. Soc. 2007, 129, 6066.
 (8) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918.
- (9) For recent reviews and examples on transition-metal-catalyzed transformations that involve β -hydrocarbyl eliminations, see: (a) Miura, M.; Satoh, T. Top. Organomet. Chem. 2005, 14, 1. (b) Jun, C.-H.; Moon, C. W.; Lee, D.-Y. Chem.—Eur. J. 2002, 8, 2422. (c) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407. (d) Chow, H.-F.; Wan, C.-W.; Low, K.-H.; Yeung, Y.-Y. J. Org. Chem. 2001, 66, 1910. (e) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc.
- (10) Tsuji, J. Palladium Reagents and Catalysts, 2nd ed.; John Wiley & Sons: Chichester, U.K., 2004.

JA0775063